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The structure determination by X-ray diffraction of one
of the two isomers formed in the hydrolysis of 2,8,9-
trioxa-1-phospha-adamantane is reported. The confor-
mation of the isomer 3-a-ox0-3-3-hydrido-7-3-hydroxy-
2,4-dioxa-3-phosphabicyclo[ 3.3.1 1nonane, predicted
earlier on the basis of infrared and pnmr spectral
evidence, is fully confirmed. The structures of both
isomeric hydrolysis products are discussed in terms of
conformational stability and a proposed mechanism
for the reaction. POCsH, crystallizes in space group
P2,2,2, with unit cell dimensions 5.84X11.6710.91 4
with four molecules per unit cell (p=1.59 g/cm’). The
intensities of 1007 reflections were measured by counter
methods and refined by least squares to a conventional
R factors of 6.3%.

Introduction

The acid-catalyzed hydrolysis of P(OCH)y(CH.)s
(2,8,9-trioxa-1-phospha-adamantane) was recently re-
ported to produce two isomeric hydrolysates :
isomer A (3-0.-0x0-3-8-hydrido-7-3-hydroxy-2,4-dioxa-3-
phosphabicyclo[3.3.1 Jnonane) and isomer B (33-oxo-
3-a-hydrido-7-8-hydroxy-2,4-dioxa-3 - phosphabicyclo-
[3.3.1]nonane).!
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The configuration and conformation of isomer A was
previously predicted on the basis of an assumed struc-
ture for isomer B.! It was rcasoned from earlier work’
that the presence of a long-range coupling over five
bonds of the P—H proton to a methylene proton in the
carbon ring could take place only if the proton-
phosphorus and carbon-hydrogen bonds involved were
opposing and colinear. Thus, the only conformation
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which would allow such a geometry is that shown for
isomer B in which the methylene axial carbon-hydrogen
bond is colinearly opposed to that of the phosphorus-
proton bond. Moreover, the P—O stretching frequency
was lower than that in isomer A and was thought to
be due to hydrogen bonding with the equatorial
methylene hydrogen. The position of the OH group
was determined from the lack of trans vicinal coupling
of the methine and methylene protons which would
have been expected if the OH group were equatorial.
The near identity of the pnmr spectrum of isomer A to
that of B, except for the presence of the long-range
coupling, made it attractive to postulate that only
reversal of the phosphoryl oxygen and hydrogen groups
on phosphorus differentiated isomer A from B. The
structure of isomer A reported herein fully confirms
this prediction.

The structures of these isomers are of importance
because of the paucity of structural knowledge concern-
ing the stereochemical course of nucleophilic reactions
of phosphites in general and of polycyclic phosphites
in particular. Since bond cleavage reactions in poly-
cyclic phosphites do not result in their fragmentation,
significant information concerning the stereochemistry
of these reactions can be deduced from configurational
and conformational analyses of their products.?

Experimental Section

Preparation. Crystals of the hydrolysis product were
kindly supplied by Dr. J. M. Jenkins. Single crystals
suitable for X-ray analysis were grown from acetone
by allowing the acetone to evaporate slowly. Both the
film data and the intensity data were obtained from
single crystals glued to the end of a glass fiber. No
protection from the atmosphere was found necessary.

Crystal Data. Photographs from a Weissenberg
camera with CuK, radiation dictated the space group
assignment of P2,2,2,. Lattice parameters were obtain-
ed from three crystals with Weissenberg photographs
taken with CuK, radiation at room temperature.
Calibration was achieved by replacing the crystal with
an aluminum powder sample after each photograph
was taken but before the film was removed from the
camera. The port was then reopened and the powder

(3) R. D. Bertrand, G. K. McEwen, E. ]J. Boros, and J. G. Verkade,
submitted for publication.
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lines were recorded on the same film. Two of the
crystals examined were mounted about the ¢ axis and
the third was mounted about the @ axis. The lattice
parame ers and their standard deviations (a=5.836 %+
0.012 A, b=11.671x0.010 A, ¢=10.908=0.020 A)
were obtained by a least-squares extrapolation treat-
ment* of the calibrated data. It is not understood why
the method did not yield more accurate lattice constants.

The calculated density for four molecules per unit
cell is 1.59 g/cm®. All atoms reside in general positions
with one molecule per asymmetric unit.

Collection and Treatment of Data. Three-dimensional
X-ray diffraction intensity data were gathered at room
temperature with zirconium-filtered molybdenum ra-
diation on a General Electric XRD-5 X-ray unit equip-
ped with a single crystal orienter and scintillation
counter. All reflections within a 20 sphere of 55° of one
octant were scanned using a 100 sec., 3.33°-20 moving-
crystal-moving-counter scan technique with a 3° take-off
angle and a 1.8° aperture of the counter. In addition,
the same 20 ranges for 160 reflections were scanned
with an omega off-set of 1.8° for establishing tables for
background correction. A chi dependence in addition
to the usual 20 dependence was observed and taken
into account.

Each peak, at the time it was taken, was marked as
to whether it was clearly above background, question-
ably above or indistingushable from background for
use in the refinement.

Three standard reflections (0.0.6, 0.6.0, and 3.0.2)
were periodically measured to monitor crystal shifting
and decomposition. The two primary lattice row reflec-
tions decreased in intensity linearly with X-ray exposure
time by about 8% . The 3.0.2 reflection, however, did
not decrease in intensity, Independent refinements of
the structure using data with and without decom-

position suggested that no correction for decomposition
should be made. Corrections for Lorentz-polarization
and noncharacteristic radiation® were applied to the
intensities. Because of the small linear absorption
coeflicient (3.35 cm™!) and the regular shaped crystal
(0.2xX0.2x0.3 mm), no absorption correction was
made. No correction was made for extinction, nor
were the form factors corrected for anomalous dis-
persion.

A standard deviation was calculated for the intensity
of each reflection using the following expression:

o1 = (TC+(0.03 TC)*+(0.03 Bg)*+(0.05 St)*)*

where TC =total counts, Bg=background, and St=
streak correction. The last three terms of the expression
represent estimates of nonstatistical systematic errors
in their values. Its propagation into the structure factor
was computed with the following expression:

I "2
O = ( +°-l)_Fobs

LP

where I = corrected intensity, LP = Lorentz-polarization
factor, and Fobs = the observed structure factor

_( L\"
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Structure Determination. A sharpened and an un-
sharpened Patterson map were calculated. Examination
of the three Harker layers led to the postulation of a
phosphorus position consistent with the possible P—P
peaks on the sharpened Patterson. Spheres of 1.5 A
radius were contoured about each of the P—P peaks
for locating PO vectors. In this manner an oxygen
location was found consistent with all P-O and O-O

Table I.  Final positional and thermal parameters and standard errors (in parentheses) for isomer A. The anisotropic
temperature factor expression is exp(—(h’By+k*Bn+ B+ 2hkBi,+2hB+2kB4x) )

Atom x/a y/b Z/C Bll Bzz BJJ ﬂlz Bxs BZJ

P 0.2446 (4) 0.1492 (1) 0.1140 (2) 0.0290 (6) 0.0042 (1) 0.0066 (1) 0.0018 (4) —0.0004 (4) —0.0006 (2)
O, 0.0396 (10) 0.1914 (4) 0.1680 (5) 0.0390 (22) 0.0091 (5) 0.0115 (6) 0.0051 (9) 0.0008 (10) —0.0036 (5)
O, 0.2061(8) 0.0671 (4) 0.0045 (4) 0.0299 (19) 0.0052 (3) 0.0069 (4) 0.0033 (7) --0.0008 (8) —0.0000 (3)
O;  0.4096 (9) 0.0885 (4) 0.2043 (4) 0.0341 (18) 0.0058 (4) 0.0061 (4) 0.0006 (8) —0.0018 (9) —0.0013 (4)
O, 0.0912(10) —-0.1230(4) 0.1825 (6) 0.0283 (18) 0.0065 (4) 0.0110 (6) 0.0010 (8) 0.0031(10)  0.00183(5)
C 0.3831(14) ~0.0143(6) —0.0354(6) 0.0315 (27) 0.0061 (6) 0.0045 (6) 0.0025 (11) 0.0013 (11) —0.0005 (5)
C 0.3023 (12) —0.1337(5) —0.0047 (6) 0.0277 (28) 0.0049 (5) 0.0058 (6) 0.0009 (10) 0.0005 (10) ~0.0013 (5)
G, 0.3002 (12) —0.1608 (6) 0.1333 (7) 0.0282 (29) 0.0048 (5) 0.0091 (9) 0.0017 (11) 0.0049 (12) 0.0024 (6)
C, 0.5061 (12) —0.1145 (6) 0.1993 (7) 0.0246 (25) 0.0055 (6) 0.0068 (7) 0.0030 (10) —0.0006 (12) 0.0011 (6)
Cs 0.5818 (12) 0.0046 (6) 0.1619 (6) 0.0142 (20) 0.0065 (6) 0.0085 (7) 0.0028 (11) —0.0032(11) —0.0005 (6)
Cs 0.6060 (13) 0.0137 (5) 0.0253 (7) 0.0231 (24) 0.0053 (6) 0.0090 (8) —0.0008 (11) 0.0054 (13) 0.0006 (6)
H(P) 0.36607 0.23236 0.06841

H(O,) 0.07135 —0.18462 0.22544

H(C,) 0.40409 -0.01039 —0.12661

H(C,) 0.14261 —0.14546 —0.03625

H(C:) 0.40564 —0.19195 -0.04519

H(C;) 0.31698 —0.24734 0.13566

H(C,) 0.46979 —0.11241 0.28968

H(C,) 0.63742 —0.16846 0.18607

H(C:) 0.73546 0.02002 0.20071

H(C,) 0.65353 0.09400 0.00307

H(C) 0.72733 —-0.04116 —0.00350

(5) Streak was calculated by the method of J. E. Benson and D. R.

Fitzwater, lowa State University, Ames, lowa. The method is essentially

(4) D. E. Williams, USAEC Rept. 1S-876, Ames Laboratory, Ames, the same as that reported by D. E. Williams and R. E. Rundle, J. Am.
lowa. Chem. Soc., 86, 1660 (1964).
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vectors. Several other potential oxygen positions were
discovered, but none were completely consistent with
all of the possible vector combinations. These potential
oxygen positions were rejected or established with alter-
nating least-squares position refinement and electron
density computations. Subsequent Fourier syntheses
in conjunction with a scale model of the postulated
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molecule suggested the positions of the remainder of
the atoms.
Refinement of the model was achieved by a least-
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on an IBM 360,50 computer by means of OR FLS

squares minimization of Zw(|Fy|—|Fc|)%, where w=

Table Il. Comparison of calculated and observed structure factors based upon the parameters given in Table 1. The three columns

consist of k, Fes (X10) and Feca (X 10).
their backgrounds
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Negative values of F.. denote reflections which were not clearly distinguishable from
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least-squares program® employing Hartree-Fock-Slater
scattering factor tables.” With the inclusion of the last
Z||Fol ||| )
Z‘F0|
for this acentric structure with more than ten reflec-
tions per variable and isotropic temperature factors
dropped from 0.191 to 0.084 in two cycles. All atoms
were eventually given anisotropic thermal parameters.
Positions for the nine cyclohexane hydrogens were
calculated, and the atoms were included but were not
allowed to vary. The phosphoryl and hydroxyl
hydrogens were located on a difference Fourier syn-
thesis. Their positions were adjusted to conform with
typical bond distances and were not varied.

Independent refinements with the 706 clearly ob-
served reflections and with the total 1007 reflections
were carried out. The parameters and their standard
deviations refined to very nearly the same values. The
final positional and thermal parameters (listed in Table
1) for the observed data yielded an unweighte<|1 R-factor

. (Zw(|Fo —\Fa’)z)”)
of 0.063 and a weighted R factor | Rwt (EwEd)"
of 0.052. Table 1l contains a listing of the structure
factors calculated from these parameters as well as the
observed structure factors.

A final difference Fourier using all data and the final
parameters of Table I was computed. No peaks or
holes corresponding to more than 0.5 electrons /A’
were found. The standard error of an observation of
unit weight Vﬁ.{j@wmad tn he 1 .28 fram_thea relatinn-

of the atoms, the reliability index (R:

observations and NV is the number of variables.

Structure. A stereoscopic drawing of the molecular
structure of isomer A with 509% probability thermal
ellipsoids was computed with OR TEP.? The plotted
result is given in Figure 1 Interatomic distances and
angles and their standard deviations were computed
with OR FFE’ on the basis of the complete variance-
covariance matrix of the last least-squares cycle and
are listed in Table III.

A stereoscopic drawing of the packing of the mole-
cules in the unit cell was computed and plotted and

Figure 1. The molecular structure of isomer A with 50%
probability thermal ellipsoids.
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Table ll. Interatomic distances and angles and their standard
errors

Bond Distances Bond Angles

Atoms Distance Atoms Angle
O~-P 1.420 (6) O,PO, 114.4 (3)
O-P 1.446 (6) 0,PO; 114.6 (3)
P-0, 1.550 (5) 0,P0O; 107.5(2)
P—0, 1.549 (5) PO.C, 121.8 (4)
0,—C; 1.468 (8) PO,C; 121.6 (4)
0,—Cs 1.476 (8) 0.C,C, 108.1 (5)
0,~C; 1.403 (9) 0,G:C, 108.9 (5)
C—C; 1.507 (9) 0.C,C, 109.8 (5)
Cy—Cs 1.541 (9) 0,C:Cs 109.2 (6)
C—Ci 1.501 (10) 0,C:C, 108.5 (6)
Ci—Cs 1.512(9) 0.C:Cy 113.4(6)
Cs—Cs 1.503 (9) C.C.C, 114.2 (5)
C—C, 1.495 (10) C,CiCy 113.0 (6)
0,~0/°* 2.816(7) CiCCs 115.6 (6)
CiCsCs 111.2 (6)
C,CeC 110.1 (6)
CCiCh 112.6 (6)

a Interatomic distances averaged over thermal motion. O, is
assumed to ride on P.° The effects of thermal motion on all
other interatomic distances was never more than 0.007 A. The
actual O;~P distance undoubtedly is somewhere between the
extreme in which independent motions of O; and P are
assumed (1.420 A) and the extreme in which the motion of O,
follows that of P (1.4460 A). ® O, is related to O, by the
screw axis y.

is shown in Figure 2. A weak hydrogen bond presum-
ably exists between the hydroxyl hydrogen and O of
the neghboring molecqle related by the two-fold screw

Figure 2. Stereoscopic drawing of the thermal ellipsoids and
packing of isomer A. The z axis is horizontal and the y
axis is vertical.

The final value of the z coordinate of C; appears to
be anomalous. A shift from this parameter of severai
standard deviations tends to equalize the C—C; and
C3—C, distances with the average C=C distance as well
as the O,—~Ci—C; and O4~C;—C, angles. No data
analysis or chemical reasoning, however, could be
found to explain its refined position.

Results and Discussion

The structure of isomer A strongly suggests that the
postulated structure of B is also correct. The some-

(10) W. R. Busing and H. A. Levy, Acta Cryst., 17, 142 (1964).



what unusual boat conformation of the phosphorus-
containing ring would be preferred because of steric
interference of the phosphoryl oxygen with that of the
OH group in the chair conformation of this ring. The
ﬂexmg of the phosphorus- -containing ring in both
isomers rather than the carbon ring upon cleaving the
parent phosphite could be due to two factors. Not
only are the accompanying hybridization changes more
permissible for phosphorus and oxygen than for carbon,
but flexing of the carbon ring would necessitate un-
favorable eclipsing interactions among seven carbon
protons and the OH group. Interatomic distance
calculations based upon the POC and OPO angles found
in isomer A give a O,—C; distance for isomer B of 3.4 A.
It appears, therefore, that stabilization of the boat form
of the ring in isomer B is not achieved by hydrogen
bonding.

The OPO (107.5°) and average POC (121.7°) bond
angles in isomer A are larger than those averaged bond
angles in the parent caged phosphite in the coordination
compound [ Ni(P(OCH)s(CH,):)s1(C10s); (104 and
116°, respectively)."*? If bond angle changes are small
on coordination of the parent phosphite, its hydrolysis
to isomer A would allow a release of some strain in
these angles since the POC angles of uncyclized alkoxy
moieties in phosphates tend to be 120°.* That some
degree of pi bonding exists between phosphorus and
the ring oxygens is suggested by the nearly 120° POC
bond angles (indicative of sp* oxygens) and the shorten-
ing of all three P—O bond distances over the sum of the
oxygen and phosphorus covalent radii (1.76 A).

The structure of isomer A (and that of B by impli-
cation) is clear evidence that hydrolysis of the parent
phosphite occurs by a different mechanism than its

(11) E. F. Rield, J. G. Verkade, and R. A. Jacobson, to be published.
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reaction with alkyl halides. From earlier dipole
moment and spectral studies it was shown that only
one isomer was obtained in the Michealis-Arbuzov
reaction and that the halide was equatorially disposed
on the carbon ring.” The reaction of alkyl halides with
phosphites generally involves carbonium attack on

0
[
077 N\, AT

phosphorus followed by SN attack of halide on an
oxygen-bearing carbon,” thus predicting the formation
of an equatorial halide as shown in the reaction with
P(OC)(CHz):. To explain the formation of isomer
A and B in the acid-catalyzed hydrolysis reaction, it
seems reasonable at this time to postulate a mechanism
similar to the one proposed by Aksnes and Aksnes'
with the added feature of two possible rearrangement
modes at phosphorus in an intermediate stage to ac-
count for the isomerism.
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Kinetic studies and O labelling experiments are in
progress to test the validity of this mechanism.

(14) K. D. Berlin, C. Hildebrand, A. South, D. M. Hellwege, M.
Peterson, E. A. Pier, and J. G. Verkade, Tef., 20, 323 (1964).

(15) R. F. Hudson, ’’Structure and Mechanism in Organo-Phosphorus
Chemistry”’, Academic Press, New York (1965).

(16) G. A. Aksnes and D. Aksnes, Acta Chem. Scand., 1623 (1964).

Nimrod, Firtzwater, Verkade | Crystal Structure of a Hydrolysis Product of 2,8,9-Trioxa-1-Phospha-Adamantane



